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Abstract— Advantageous use of PC in last two decades has resulted a revolution in instrumentation for measurement and automation. Virtual 
instrumentation (VI) is the result of this revolution. VI is the use of measurement and control hardware and an industry standard computer with 
powerful application software to create applications as per the need of user. LabVIEW is application software used in VI system. LabVIEW is an 
essential part of a VI because it offers data acquisition and better interfacing with hardware. Owing to its non-linear behavior, Inverted Pendulum 
(IP) is highly unstable and observed to be the potential candidate for control problem. This paper describes the modeling of IP system followed by 
the pole placement based state feedback controller and Linear Quadratic Regulator (LQR) is simulated in LabVIEW. System states are estimated 
and observer based controller is designed for the system. The performance of controllers is observed with the help of virtual instrument. 
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——————————      —————————— 

I.  Introduction  
IP is one of the most haunted problems of classical control 
engineering. IP on a cart is a nonlinear and unstable control 
problem. The complexity of the problem depends also on 
the flexibility of pendulum rod .The problem is to balance a 
pole on a mobile platform that can move in only two 
directions, to the left or to the right. The basic principle in 
rocket or missile propulsion uses the concept of this 
inverted pendulum system. Virtual instrumentation is the 
measurement technique with which we can perform real 
time measurements by creating user defined applications in 
LabVIEW software. LabVIEW is a graphical programming 
environment suited for high level or system level design. 
Software component of a virtual instrument is the main 
difference between natural and virtual instrumentation. 
With the help of software complex and expensive 
equipment are being replaced by simpler and less 
expansive hardware. In [3, 5, 9, and 10] the inverted 
pendulum on a moving cart system was stabilized by LQR 
controller with linearized state space model. In [12] Pole 
Placement based State feedback control system design with 
and without estimation has been introduced. Robustness is 
essential feature for inverted pendulum system due to its 
intrinsic non linearity, so in [14], a robust compensation has 
been developed by seeming dry friction and endeavored to 
implement it in the IP system. A robust periodic controller 

with zero placement capability for IP system has been 
designed by authors in [15]. Various control schemes have 
been developed by authors like Fuzzy, Sliding Mode, 
Expert systems and Neural networks [13] and their 
comparative study has been attempted in [16]. 
 

In this paper, the inverted pendulum system modeling 
i.e. the mathematical model of the pendulum system is 
described in the section II. The mathematical modeling is 
based on the Lagrangian which is the conservation of 
energy. In III and IV section the pole placement based state 
feedback controller and LQR controllers are described. 
Section V describes the state observer and observer based 
state feedback controller. The simulation results for the pole 
placement, LQR and observer based controllers are given in 
the section VI and conclusion is given in section VII. Finally 
the references are given in section VIII. 

II. ARCHITECTURE OF 
INVERTED PENDULUM  

 
An inverted pendulum (IP) is a basic as well as 

important problem of control system shown in Fig.1. This is 
a non linear and highly unstable process. It has one input 
and two output signals. Here our objective is to balance a 
pendulum vertically on a motor driven wagon. When   the 
wagon moves along the x direction the pendulum should 

IJSER

http://www.ijser.org/
mailto:d.rawat@ddn.upes.ac.in
mailto:deepak.kumar@ddn.upes.ac.in
mailto:dyadav@ddn.upes.ac.in


International Journal of Scientific & Engineering Research Volume 9, Issue 1, January-2018                                                                                           892 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org 

not fall.  A DC motor is used to drive the wagon; a 
controller is controlling the motor. 

The objective here is to balance the pendulum at a 
vertical position on a motor driven cart, with specific 
desired settling time for angular position of pendulum and 
displacement of cart. The angular displacement of the 
inverted pendulum from vertical should be zero. The 
linearized model is derived using the Lagrangian equations 
of motion. The Lagrangian can be defined as                      

K Uλ = −                                        (1) 
Where, K is kinetic energy of system and U is the potential 
energy. The Lagrangian equations can be written as: 

                    
0
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These lagrangian equations are just an equivalent 
representation of newtons equations of motion. The system 
parameters for inverted pendulum on a moving cart are 
given following. 
 
  X:   position of the cart or displacement of the cart 
θ  :   Pendulum angle from vertical 
  F:    force applied on the cart 
  M:   mass of the cart 
   m:  mass of the pendulum 
    l:   length to pendulum centre of mass 

 
   Fig.1. (a) Inverted Pendulum System (b) Free Body Diagram 
 
The system equations in state space form can be written as 
following 
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III. Pole placement based 
controller for inverted pendulum 

The pole placement design [8] is a method to place all the 
closed loop poles at the desired locations. The sufficient 
and necessary condition for the arbitrary placement of 
closed loop poles (in the complex plane) is such that:  

                                   

( ) ( ) ( )
( ) ( )

X t AX t Bu t
Y t CX t

•

= +
=

                     (4)                                                                                                                  

is controllable, If all n state variables x1, x2,.., xn can be 
accurately measured for any instant of time, according to 
linear control law of the form 

1 1 2 2(t) (t) (t) ...... (t) (t)n nu k x k x k x kX= − − − − = −                   (5) 

                            
1 2[k , k ,...k ]nK =                                          (6) 

Where, K is a constant state feedback gain matrix. This K 
can be obtained with Ackerman’s formula [8].The closed 
loop system is described by the state differential equation: 
                               (t) (A BK) (t)X X

•

= −                                   (7) 
The feedback gain matrix [K] should be insensitive to any 

changes in system. It should be robust in nature. The closed 
loop should not be affected by any disturbance. 

IV. LQR controller for inverted 
pendulum 

LQR is a state feedback controller which minimizes the 
performance index J of a controllable and linear system 
[8][3][5]. Consider the linear system the quadratic objective 
function J (or cost function) as  

                      0

1 )
2

T
T TJ x Qx u Ru dt= +∫

                                (8) 
 LQR minimize J with respect to the control input u (t). 
Now we see that J represents the weighted sum of energy 
of the state and control. In general case, Q and R represent 
respective weights on different states and control channels. 
The main design parameters are Q and R, such that Q be 
symmetric positive semi definite and R symmetric positive 
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definite for a meaningful optimization problem. The 
controller of the feedback form is given as 
U (t) = -k (t) X (t) where 1( ) ( )TK t R B P t−=                      (9) 
Here also k state feedback gain matrix is of the form  
                         1 2[k , k ,...k ]nK =                                            (10) 
LQR approach gives us optimal value of K for which 
system behaves could be stable under applied constraints. 

V. obserevr based controller for 
inverted pendulum 

While designing pole placement based state feedback 
controller author(s) have assumed the availability of all the 
state variables for feedback but, in practice, this is not the 
case (a few seems to be unavailable). So author(s) need to 
estimate these unavailable state variables. The state 
observer estimates the state variables based on the 
measurement of outputs and control variables of the system 
[8]. 
Mathematical model for observer can be written as 
following by considering the plant as equation no. 4. 
                         ( )X A LC X Bu LY= − + +                      (11) 

where X estimated state and C X  is the estimated output. 
L is observer gain matrix.  
The Eigen values of (A-LC) are chosen in such a way that 
the dynamic behavior of error vector is asymptotically 
stable.  
Consider completely state controllable and completely 
observable system. 

                              

( ) ( ) ( )
( ) ( )
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•

= +
=                                  (12)

 

The state feedback control based on the observed-state is 
stated as: 
                               u KX= −                                     (13)  
Assuming this state of control, the state equation becomes: 

                    ( ) ( )X A BK X BK X X
•

= − + −                       (14) 

The difference between true state and observer state can be 
written as           ( ) ( ) ( )e t X t X t= −                                       (15) 
By putting this error in observer state equation it becomes:  

                    ( )X A BK X BKe
•

= − +                              (16) 
The equation describing observer-error is:  

                             ( )e A LC e
•

= −                                (17) 
So the dynamics of observed state feedback control system 
can be written as  
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VI. simulation results for pole 
placement,lqr and obserever based 

controller 
System parameters for inverted pendulum system are taken 
as given in table I. 

TABLE I 
VALUES OF THE SYSTEM PARAMETERS 

 
The state space representation for the system is: 
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0
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                                  (20)   

These are the parameter coefficient matrices which describe 
the system with chosen parameter. 

A. controllabilty and observabilty test 
The necessary and sufficient condition of the design of state 
feedback based controllers is that the system must be 
completely state controllable[8] and for observer based 
controller is that the system must be completely state 
controllable and observable. A Linear time invariant system 
is controllable if rank of the controllability matrix is n.    

                 
1: : ....... nrank B AB A B n−  =                       (21)

 

A Linear time invariant system is observable if rank of the 
observability matrix is n.  

                
( ) 1

: : .....
nT T T T Trank C A C A C n
−  =  

                  (22) 

So the controllability and observability for the system are 
checked with LabVIEW.  As a result system is found to be 
controllable, observable, detectable and stablizable. 
 

Symb
ol 

Parameter Value 

    M Mass of cart 10 kg 

    m Mass of pendulum rod 1 kg 

     l Length of pendulum 0.5 m 

    g Gravitational constant 9.8 m/s2 
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Fig.2. Screen shot of LabVIEW Front panel showing that the Inverted 
pendulum system is controllable and observable. 
 

B. Pole placement controller 
The pole placement based method successfully gives the 
stable responses for pendulum angle and cart position for 
inverted pendulum system. In designing this pole 
placement controller we have placed the system poles at a 
location given by matrix P.                          
                        P= [-4+4i, -4-4i, -7, -8]  
The desired pole locations have been calculated by 
considering the transient response characteristics and 
comparing it to standard characteristic equation [8]. We 
obtained the state feedback gain matrix using Ackerman’s 
formulae as 
     [ ]1604.9 357.73 914.29 473.47K = − − − −           (23) 

The Block diagram for pole placement controller has been 
shown in Figure. 3 and the closed loop responses for 
pendulum angle and cart position have been shown in Fig. 
4. Our objective is to get the settling time near to 5 seconds. 
The desired settling time has been obtained for both output 
variables but cart position has steady state error. While 
designing this pole placement controller we have assumed 
that all the states are available for feedback. 
 

 
 
Fig.3. Screen shot of LabVIEW Block diagram for pole placement of 
Inverted pendulum system 
   

 
 
Fig.4. Screen shot of LabVIEW Front panel for pole placement 
response of Inverted pendulum system 

C. LQR Controller 
For LQR controller we need to decide the state weighted 
matrix Q as following. 

1 0 0 0
0 0 0 0

*
0 0 1 0
0 0 0 0

TQ C C

 
 
 = =
 
 
 

                                              (24) 

and R=1(assumption). The state feedback gain matrix is 
procured to be: 

[ ]1 236.36 51.13 1.0 5.12K = − − − −                              (25) 

The block diagram for LQR controller has been shown in 
Fig. 5. The closed loop step response of for both the 
system’s output pendulum angle and cart position is shown 
in Fig. 6. 
The settling time for both the pendulum angle and position 
of cart is about 20 seconds but we want it to be less than 5 
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seconds. So the Q matrix will be tuned for improving the 
settling time and other specification.  Now we select Q as 
Q2 

 
 
Fig.5. Screen shot of LabVIEW Block diagram for pole placement of 
Inverted pendulum system 
 

 
 
Fig.6. Screen shot of LabVIEW Front panel for  step  response of  LQR  
for Inverted pendulum system  with Q1. 

  

   
2

1000 0 0 0
0 0 0 0
0 0 200 0
0 0 0 0

Q

 
 
 =
 
 
 

                                           (26)  

We can do this by increasing the non-zero diagonal values 
in the matrix Q [6]. 
Q the state weighted matrix must be symmetric and 
positive semidefinite as to keep the error squared positive. 
q11- weights to the position of cart; 
q33- weights to the pendulum angle; 
Since there is a constraint on position of cart it has to be in a 
range so this factor is very important in tuning of Q so we 
will weight to it more q11>>>q33. 

State feedback gain matrix in this case can be obtained as:     
[ ]2 307.39 66.80 14.14 24K = − − − −                         (27) 

In Fig. 6 the closed loop response for both the outputs i.e 
pendulum angle and cart position is shown and we obtain 
the settling time for pendulum angular position is 6 
seconds and for cart position is 7 seconds which is not as 
per our requirement so we need to further tune the matrix 
Q. 
 

 
Fig.7. Screen shot of LabVIEW Front panel for step   response of LQR 
for Inverted pendulum system with Q2. 

 
If we further tuned the Q the settling time can be reduced. 
Now we take Q as Q3. 

                                          

3

5000 0 0 0
0 0 0 0
0 0 200 0
0 0 0 0

Q

 
 
 =
 
 
 

                           (28) 

We get the state feedback gain matrix as         
[ ]3 321.1209 68.4466 14.1421 24.8128K = − − − −         (29) 

 
 
Fig 8.Screen shot of LabVIEW Front panel for step response of LQR 
for Inverted pendulum system with Q3. 

 
Fig 7 shows LQR response for both the pendulum angle 
and cart position with increased Q3. The settling time as 
seen from above figure is near to 5 seconds. The steady 
state error for angular position is zero but a finite steady 
state error exists for cart position. Now we have eliminated 
this steady state error by adding a pre-compensation in 
reference. 
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D. Ellimination of steady state error by adding 
precompensation 

The pole placement and LQR based state feedback 
controller gives desired transient response specifications 
but the steady state error for cart position is an issue in 
designing the controllers.  To eliminate this steady state 
error we add a pre-compensation in reference input [18]. A 
constant gain N is added after the reference. We can find 
this N with the help of MATLAB user defined function 
rscale.m. We obtained the value of N= -14.1421 
 

 
 
Fig.9. Screen shot of LabVIEW Front panel for step response of LQR 
for Inverted pendulum system with Pre-compensation. 
 
Thus, the pre-componsator N has eliminated the steady 
state error and settling and rise time is as per our 
requirement. The pendulum overshoot is found to be in the 
design range. 
 

E. Observer based controller 
In the design of observer based controller the observer gain 
matrix L is obtained as shown in equation below. 
 

        
17.6013 1.0249
98.2967 9.1610
0.9355 17.9987
7.3272 80.1815

L

 
 
 =
 
 
 

                                       (30) 

The observer gain matrix L is a weighting matrix involving 
the difference between the estimated output and the 
measured output. This term consistently rectifies the model 
output and improvises the performance of the observer. 
Author(s) have taken state feedback gain matrix K as K3. The 
observer-poles are taken with the help of Eigen values of 
closed loop equation [18] i.e. the closed loop poles of A-BK. 
Observer-poles are taken as    
                  P=[-7.4,-8.4,-9.4,-10.4]                                     (31) 

So the  parameter coefficient matrices describe the complete 
dynamics of the observer based state feedback control 
system  using equation no. 18 can be obtained as follows. 

 
0 1 0 0 0 0 0 0

42.66 13.69 2.8 4.9 64.22 13.69 2.8 4.7
0 0 0 1 0 0 0 0

31.13 6.84 1.41 2.48 32.11 6.84 1.41 2.48
0 0 0 0 17.6 1 1.025 0
0 0 0 0 76.74 0 9.16 0
0 0 0 0 0.93 0 18 1
0 0 0 0 8.30 0 80.18 0

A

 
 − − − − 
 
 − − − − =  − −
 

− − 
 − −
 

− −                    

(32)

 

     

0
2.82

0
1.41
0
0
0
0

B

 
 
 
 
 − =  
 
 
 
 
  

                   1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

C  
=  
 

        (33) 

  
The above matrices are the complete dynamics of observer 
based state feedback controller. 

 

 
 
Fig 10.Screen shot of LabVIEW Front panel for step response of 
observer based controller Inverted pendulum system. 
 
Fig 10 shows that both the output variables i.e. pendulum 
angle and cart position are stabilized and settling time is 
about 5 seconds. The systems states are estimated 
successfully with no error. This state estimation based 
observer controller has same response as LQR response 
with state feedback gain matrix K3.  The settling time 
obtained for various controllers are summarized in Table II. 
 

TABLE III 
SETTLING TIME ANALYSIS FOR CONTROLLERS  
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VII. conclusion 
  Inverted Pendulum is very difficult system to control due 
its intrinsic non linearity and instability. Two state feedback 
based control techniques namely pole placement and linear 
quadratic regulator is simulated with the help of LabVIEW.  
The sate feedback gain matrices are obtained and then 
closed loop responses for both cart position and angle of IP 
are found to be satisfactory. Then the system states are 
estimated and observer based controller is designed. The 
observer based controller response is found to be same as 
state feedback closed loop response. Thus the system states 
are estimated successfully. 

References 
 

[1] National Instruments, “LabVIEW Course LV1 & LV2”, 2011.  
[2] www.ni.com /white-paper/4752/en 
[3] Hongliang Wang, Haobin Dong, Lianghua He, Yongle Shi, Yuan 

Zhang, “Design and Simulation of LQR   Controller with the 
Linear Inverted Pendulum,” International Conference on Electrical 
and Control Engineering (ICECE), pp. 699-702, June 2010. 

[4]  Stanislaw H. Zak, “Systems and Control” Oxford    University   
Press, New York, 2003. 

[5] Chandan Kumar, Santosh Lal, Nilanjan Patra, Kaushik Halder, 
Motahar Reza “Optimal Controller Design for Inverted Pendulum 
System based on LQR Method”,International Conference on 
Advanced Communication Control and Computing 
Technologies(ICACCCT),DOI:10.1109/ICACCCT.2012.6320782,Ram
nathapuram,Tamilnadu, August 2012. 

[6] Changkai Xu; Ming Li ; Fangyu Pan " The System Design and 
LQR control of a Two-  wheels Self-balancing Mobile 
Robot", Electrical and Control Engineering (ICECE),2011 
International Conference on,  page(s): 2786 – 2789 

[7]  Zhang Lin, Song Yin, “Design of PID Temperature Controlling 
System Based on Virtual Instrument Technique”, The Eighth 
International Conference on Electronic Measurement and 
Instruments, 2005.  

[8] K. Ogata, System Dynamics, 4th ed, Pearson Education 
(Singapore) Pvt. Ltd., New Delhi, 2004 

[9] D. Chatterjee, A. Patra, H. K. Joglekar, “Swing-up and 
Stabilization of a cart-pendulum system under restricted cart 
length”, Systems and Control Letters, vol. 47, pp. 355-364, July 2002. 

[10] F. L. Lewis, “Linear Quadratic Regulator (LQR) State Feedback 
Design”, Lecture notes in Dept. Elect. Engineering, University of 
Texas, Arlington, Oct 2008. 

[11]  M.G. Henders, A.C. Soudack, “Dynamics and stability state-
space of a controlled inverted pendulum”, International Journal of 
Non-Linear Mechanics, vol.31, no.2, pp. 215-227, March 1996. 

[12] M. W. Dunnigan , "Enhancing state-space control teaching with a 
computer-based assignment," IEEE Transactions on Education, 
vol.44, no.2, pp.129-136, May 2001  

[13] Chen Wei Ji., Fang Lei, and Lei Kam Kin, “Fuzzy Logic Controller 
for An Inverted Pendulum System”, IEEE International 
Conference on Intelligent Processing Systems, pp.185-189, 1997. 

[14]  G. W. Van der Linden and P.F Lambrechts, "H/sub ∞/ control of 
an experimental inverted pendulum with dry friction," Control 
Systems IEEE , vol.13, no.4, pp.44-50, Aug. 1993 

[15] S. K. Das, K. K. Paul, “Robust compensation of a Cart–Inverted 
Pendulum system using a periodic controller: Experimental 
results”, Automatica, vol. 47, no. 11, pp. 2543-2547, November 
2011. 

[16] C. C. Hung, B. Fernandez, "Comparative Analysis of Control 
Design Techniques for a Cart-Inverted-Pendulum in Real-Time 
Implementation," American Control Conference,pp.1870-1874, 2-4 
June 1993. 

[17] K.J. Astrom, K. Furuta, “Swinging up a pendulum by energy 
control” , Automatica, vol. 36, no. 2, pp. 287-295, February 2000 

[18] CTM Example: Inverted Pendulum Animation 
     www.engin.umich.edu/group/ctm/gui/pend/invGUI.html 

 

 
 

Controllers 

Settling Time  
(seconds) 
Pendulum  

angle  
Cart 

position  
 

   Pole placement 1.37 1.4 

    LQR with Q1 18.1 20.7 

      LQR with Q2 5.41 6.19 

     LQR with Q3 5.44       6.16 

Observer Controller 5.5       3.64 
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